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ABSTRACT

This paper presents a novel method to construct a probabilis-
tic tissue prior, for Bayesian tissue segmentation, which is
based on nonparametric Markov statistics of tissue intensi-
ties learned from training data. The proposed nonparametric
Markov (NPM) prior is in contrast to the conventional tissue-
probability-map (TPM) prior that is based on the voxel loca-
tion in a common anatomical template space. Given a set of
manually labeled voxels as the training set, the NPM prior
is constructed by learning a fuzzy classification function that
distinguishes the Markov statistics of tissue intensities in a
statistical supervised-learning framework. The validation ex-
periments in this paper compare the efficacy of the NPM prior
to that of the TPM prior in producing tissue segmentations,
and demonstrate the advantages of the NPM prior, qualita-
tively and quantitatively, over the TPM prior, especially in
cortical regions.

Index Terms— image segmentation, probability, learning
systems, magnetic resonance imaging

1. INTRODUCTION

Tissue segmentation remains a challenging task in biomedi-
cal image analysis due to complex biological tissue proper-
ties and limitations of imaging technologies. Bayesian seg-
mentation approaches have been widely applied to biomedi-
cal images. Their popularity stems from the rigorous incor-
poration of priors, gained from clinical and biological knowl-
edge and understanding of the MR imaging technique, to tune
tissue probabilities and constrain the segmentation solution.
A widely used prior is the template-based tissue probabil-
ity map (TPM), or probabilistic atlas, which gives the tis-
sue probabilities based on the anatomical location in the im-
age [1]. Because of the significant variability in anatomical
structures, especially in the cortical regions where there may
not be a one-to-one correspondence between two individuals,
the quality of the image registration may be compromised.
Furthermore, the template is typically produced by solving an
optimization problem in a very high-dimensional space (the
anatomical image) [2] with a small number of data points
(the manually segmented image) relative to the dimension of
the space. As a result, there may be significant blurring in
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Fig. 1. Construction process of (A) the conventional TPM
prior and (B) the NPM prior. The dashed frames indicate the
prior learning processes.

the TPM. Apart from being time consuming, reliable man-
ual segmentation of certain datasets, is challenging to obtain.
Labeling errors in the training data will propagate to the con-
structed TPM prior. These factors, taken together, undermine
the efficacy of TPM priors for tissue segmentation.
We propose an intensity-based nonparametric Markov

(NPM) prior for tissue segmentation. The prior is learned
from nonparametric high-order statistics, using a supervised
learning framework, i.e. support vector machine (SVM) [3],
although the proposed method can be adapted to use any
other supervised-learning framework that performs function
approximation. Figure 1 compares the construction of the
NPM prior with the TPM prior. One prominent advantage
of the NPM prior is that it does not require a large number
of manual segmentations of the entire anatomy represented
in the image volumes, as required by the TPM prior in order
to capture the tissue-structure variability. In principle, it is
much easier to capture the variability in the space defined on
neighborhood intensities than to capture the variability over
the entire anatomical image space, because the latter space
has many more dimensions.

73978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



The validation experiments demonstrate that the pro-
posed NPM prior can provide estimates of tissue probabilities
with significantly greater discriminatory power in the highly-
folded cortex, in contrast to that of the TPM prior. Because
of the error tolerance of the fuzzy learning method, the man-
ual segmentation need not be of high quality. The supervised
learning framework underlying the NPM prior makes it robust
against image noise and mislabeling in manual segmentation
in the training images.

2. RELATEDWORK

The NPM prior models context dependence using estimates
of joint intensity PDFs in voxel neighborhoods. Considering
the neighborhood intensities as a realization of a Markov ran-
dom field (MRF), the inherent structure of their distribution is
equivalent to the Markov probability density function (PDF).
This approach is closely related to the research on learning the
Markov statistics of natural images [4], and empirical MRF
modeling for texture synthesis [5] and denoising [6]. Awate
et al. [7] employ kernel density estimation for unsupervised
learning of theMarkov PDFs in images for segmenting tissues
in adult-brain MR images. Different than these nonparamet-
ric modeling methods that explicitly learn the Markov statis-
tics of classes (generative learning) [6, 7], the proposed NPM
prior is constructed by directly learning a classifier to distin-
guish the classes (discriminative learning) [3].

3. BAYESIAN IMAGE SEGMENTATION AND PRIOR
PROBABILITIES

Image segmentation can be formulated as a Bayesian infer-
ence problem in a random-field framework. Given a set of
voxels T on a Cartesian grid, a random field image model,
i.e. a set of observed random variables X = {Xt}t∈T, is as-
sociated with a set of hidden random variables L = {Lt}t∈T

where Lt is assigned as tissue types in the segmentation task.
An input imageX consisting of a set of single or multi-valued
data {xt}t∈T, which is a realization of the random field X,
is associated with a particular segmentation L = {lt}t∈T.
To introduce the intensity-based tissue prior, we draw a con-
cept of the synthesized image from the texture analysis litera-
ture. A novel image can be synthesized by a learned statistical
model. Joint shape and appearance prior models have been
applied to atlas matching [8] and segmentation [9] of medi-
cal images, by minimizing the difference between the target
image and the synthesized model image. Similar to the for-
mulation proposed in [9], a MAP segmentation can be given
by

L̂, X̂L = argmax
L,XL

P (L,XL|X)

= argmax
L,XL

P (X|L,XL)P̃ (L,XL),

where XL is the synthetic model image of the real image X,
X̂L the optimal estimation of the synthetic imageXL, and L̂
the optimal segmentation. To avoid confusion, we use P̃ to
denote the prior probability. Because we are only interested
in segmentation, it is reasonable to assume that the synthetic
image is very close to the real image, i.e. XL ≈ X, therefore

L̂ ≈ argmax
L

P (X|L,XL ≈ X)P̃ (L,X), (1)

where P (X|L,XL ≈ X) ≈ P (X|L) is the likelihood func-
tion, and P̃ (L,X) the joint label and intensity prior density
function.

4. LEARNING NPM PRIORS VIA SUPPORT
VECTORMACHINES

The joint label and intensity prior density function P̃ (L,X)
in (1) can be regarded as a product of the different priors,
for instance template-based tissue priors or MRF smoothness
priors. In this paper we are interested in the estimation of
the NPM prior relying on high-order intensity statistics in the
training data, which we denote as P̃X(X,L). To learn the
proposed prior we use the supervised learning framework of
the SVM [3]. To generate tissue prior probabilities for a novel
image, the SVM model is applied to the novel image and the
decision value at each voxel is subsequently converted to es-
timate the prior probabilities. The proposed prior relies on
high-order intensity statistics as the distinguishing feature.
The choice of the neighborhood is user-dependent. The re-
sults in this paper employ a first-order neighborhood in 3D
images. The proposed approach can be extended in a straight-
forward way to incorporate other features to discriminate be-
tween tissues.
Assume the conditional independence between data and

use the neighborhood intensities of each image voxel as the
feature vector,

P̃X(X,L) =
∏

t∈T

P̃X(yt, lt),

where yt = {xi, i ∈ Nt}, Nt is the neighborhood of voxel
t. For an input datum yt whose label lt is to be determined,
the SVM produces a decision value fSV M (yt) that is equal
to the signed distance of the point yt from the decision hy-
persurface. The literature presents several ways of calibrating
the decision value fSV M (yt) to a probability value that can
be employed in a Bayesian classification scheme. We adopt
a popular technique proposed by Platt [10], which first fits a
sigmoid function

P̃X(yt, lt) =
1

1 + exp(AfSV M (yt) + B)

to the class probabilities, obtained for the SVM outputs. The
optimal values for the parameters A and B are learned by a
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Fig. 2. SVM calibration: fitting a sigmoid function for the
GM tissue class in simulated BrainWeb MR images. Each
circle denotes the class probability computed from the partic-
ular SVM decision value [10].

maximum-likelihood method from the training set [10]. In or-
der to avoid bias, the training set used to learn the calibration
function should be different from that used to learn the SVM
classifier. Figure 2 depicts the fitting of the calibration func-
tion to the probability of tissue classification of a simulated
brain MR dataset. The probability estimation via SVM can
solve multi-class problems [11].
The key idea underlying SVMs is to project the data into

a high-dimensional feature space via a kernel function, where
the projected data is assumed to be separable using a linear
classifier (a decision hyperplane). Subsequently, SVMs find
an optimal linear classifier in the projected high-dimensional
space that maximizes the separation between the classes. The
optimization finding a linear classifier in the projected high-
dimensional space is a quadratic-programming problem in-
volving inner products of feature vectors. Thus, fast algo-
rithms can be brought to bear on its solution.
We choose a radial basis function (RBF) as the kernel

function that implicitly projects the data into an infinite-
dimensional Hilbert space. The infinite-dimensional space
helps to effectively handle the complexity in the medical im-
age data. Sensitivity of nonlinear SVMs to outliers, or noise,
can be reduced by allowing some training data to be mis-
classified. Such conditions are typically incorporated in the
optimization framework through slack variables associated
with each training data. Fuzzy SVMs reduce overfitting of
the classifier and make more robust the training process to
(i) image noise and (ii) manual segmentation errors in the
training data set.

5. EVALUATION

We demonstrate the efficacy of the NPM prior by validating
the segmentations produced by using the prior term alone,
and making the likelihood term noninformative. Specifically,

we define the optimal segmentation at each voxel t as follows:

lt
∗ = argmax

lt

P̃ (yt|lt). (2)

We compared the results of the NPM prior with those of the
TPM prior. We constructed TPM priors using a state-of-
the-art diffeomorphic nonlinear registration method [2]. For
quantitative comparisons of the segmentations, we used the
Dice overlap metric.

The efficacy of the proposed NPM prior depends on the
consistency of MR image appearance of the tissues. However,
MR intensities in multiple scans of a body region of a sin-
gle patient using the same scanner and the imaging protocol
do not guarantee the same intensity value. Intensity artifacts,
noise, and partial-volume effects may reduce this consistency,
in addition to developmental and pathological conditions. To
address this problem, we ensure a reasonable match of the
histograms of the images in the training set.

We present results on adult-brain MR images from the
IBSR repository in order to evaluate the performance of the
NPM prior in the presence of imaging artifacts and brain-
structure variability actually encountered in practice. The
IBSR repository comprises 17 T1-weighted adult brain MR
images along with the manual tissue segmentations. The im-
age voxel size was 1×1×1.5mm3. Note that inhomogeneity
correction was not performed for the data. We randomly se-
lected 8 images as the training set to construct the TPM prior
and the NPM prior, and the rest as test images.

It is evident in Figure 3 that the NPM prior was able to
accurately discriminate between tissues in the cortex, where
the TPM prior provided weak estimates of tissue probabil-
ities. On the other hand, in some other regions where the
inter-tissue intensity contrast was extremely low, e.g. in the
deep GM, the location-based TPM prior was able to perform
better as they learned these locations from manual segmen-
tation. Figure 4 shows the quantitative comparison using the
Dice overlaps of the segmentation with ground truth segmen-
tation. For GM, the average (± SD) Dice overlaps with the
ground truth were 0.891(±0.025) for the TPM-based seg-
mentation and 0.925(±0.020) for the NPM-based segmenta-
tion (p < 0.02 for the paired t-test). For WM, the average (±
SD) Dice overlaps with the ground truth were 0.836(±0.015)
for the TPM-based segmentation and 0.865(±0.045) for the
NPM-based segmentation (p < 0.08 for the paired t-test).
The difference between the performance of the two priors can
be more clearly seen by considering the average Dice overlap
for GM andWM together. In this case, the average Dice over-
laps with the ground truth segmentation were 0.863 ± 0.034
for the TPM-based segmentation and 0.895 ± 0.046 for the
NPM-based segmentation (p < 0.02 for the paired t-test).
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Fig. 3. (A) Coronal slices of one IBSR image. (B) The ground
truth for the GM segmentation. The probabilities for GM de-
rived from (C) the NPM prior and (D) the TPM prior.
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Fig. 4. Quantitative comparison between the intensity-based
NPM prior and the location-based TPM prior through seg-
mentations of test images from the IBSR repository. (A) and
(B) show the Dice overlap with the ground truth for GM and
WM, respectively.

6. DISCUSSION AND CONCLUSIONS

We propose an intensity-based NPM prior, which distin-
guishes between the Markov statistics of tissue intensities.
The NPM prior exploits the discriminative power of fuzzy
nonlinear SVMs to learn the complex class boundaries in
the feature space comprising of neighborhood intensities.
The evaluation experiments on real brain-MR images show
that the NPM prior has significantly greater discriminatory
power than the template-based TPM prior in the cortex. On
the other hand, the location-based TPM prior can provide
valuable information in regions where the imaging produces
too low contrast between tissue types, e.g. subcortical re-
gions, where the TPM prior can effectively complement the
intensity-based NPM prior. Future work will deal with com-
bining the strengths of the two types of priors to facilitate
reliable tissue segmentation.
The segmentations in this paper have been produced using

the prior terms alone. A complete segmentation framework
will include a likelihood term as well that models the statis-

tics of tissue intensities in the image to be segmented. On
the other hand, by providing a better estimate of the initial
segmentation, the NPM prior can lead to faster convergence.
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